Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Use of Antimuscarinic Toxins To Facilitate Studies of Striatal m4 Muscarinic Receptors

Authors: S L, Purkerson; L T, Potter;

Use of Antimuscarinic Toxins To Facilitate Studies of Striatal m4 Muscarinic Receptors

Abstract

Striatal m4 muscarinic receptors are important because their blockade controls movement, and they are preferentially located on striatal neurons that project to the internal globus pallidus. The following studies were performed in vitro to provide a basis for using antimuscarinic toxins to study the effects of selective m4 blockade on movement in vivo. Because m4-toxin has limited selectivity alone (102-fold higher affinity for m4 than m1 receptors), m1-toxin was used first to occlude m1 receptors selectively, fully and irreversibly. It blocked 42% of the sites for 1.0 nM 3H-N-methylscopolamine in rat striatal membranes and 43% in sections of cat striatum. m4-Toxin (>500-fold higher affinity for m4 than m2, m3 or m5 receptors) blocked 88% of the residual, non-m1 sites in membranes, showing 64 pmol m4 receptors/g tissue. In comparison, AFDX-116, biperiden, clozapine, gallamine, hexahydrodifenidol, himbacine, R(+)hyoscyamine, methoctramine, pirenzepine, silahexocyclium, trihexyphenidyl and tripitramine did not distinguish m4 from other non-m1 receptors. 3H-Pirenzepine dissociated twice as rapidly from non-m1 as m1 receptors. Autoradiography was used to test the idea that m4 receptors are localized preferentially in the striosomes of the cat striatum. Non-m1 receptors were distributed equally in striosomes and matrix, indicating that striatal neurons with m4 receptors are in both compartments. Thus m1-toxin facilitates studies of m4 receptors by occluding m1 receptors, and m4-toxin is a selective antagonist for residual m4 receptors.

Related Organizations
Keywords

Elapid Venoms, Male, Gallamine Triethiodide, Neurotoxins, CHO Cells, Muscarinic Antagonists, Pirenzepine, N-Methylscopolamine, Naphthalenes, Binding, Competitive, Corpus Striatum, Benzodiazepines, Radioligand Assay, Alkaloids, Piperidines, Cricetinae, Cats, Animals, Humans, Furans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!