Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Endoc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the Endocrine Society
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the Endocrine Society
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OR01-03 Thyroid Receptor Alpha Interacts with COUP-TFII in the Regulation of Postnatal Skeletal Muscle Regeneration

Authors: Anna Milanesi; Astgik Petrosyan; Yan-Yun Liu; Gregory A. Brent; Paola Aguiari; Laura Perin; Sheue-Yann Cheng;

OR01-03 Thyroid Receptor Alpha Interacts with COUP-TFII in the Regulation of Postnatal Skeletal Muscle Regeneration

Abstract

Abstract Myopathic changes, including muscular dystrophy and weakness, are commonly described in hypothyroid and hyperthyroid patients. Thyroid hormone signaling, via activation of thyroid nuclear receptors (TRs), plays an essential role in the maintenance of muscle mass, function, and regeneration. TRs are ligand-inducible transcription factors expressed in almost all tissues, including skeletal muscle. In a mouse model of Resistance to Thyroid Hormone carrying a frame-shift mutation in the TRα gene (TRα1PV)1,2 we observed skeletal muscle loss with aging and impaired skeletal muscle regeneration after injury. We recently described that TRα interacts with the nuclear orphan receptor Chicken Ovalbumin Upstream Promoter-factor II (COUP-TFII, or NR2F2), which is known to regulate myogenesis negatively and has a role in Duchenne-like Muscular Dystrophies3. We showed that COUP-TFII expression declines with age in WT mice, while the skeletal muscle of TRα1PV mice shows a sustained significantly higher expression of COUP-TFII. Our findings suggest that the TRα/COUP-TFII interaction might mediate the impaired skeletal muscle phenotype observed in TRα1PV mice. To better characterize this interaction, we isolated SC from 10 months old WT and TRα1PV mice and cultured them in vitro using novel methods established within our lab. Using siRNA probes, we next silenced COUP-TFII and characterized the cells via RNA-seq analysis. In vitro, we assessed myoblast differentiation and proliferation using differentiation assays and EdU incorporation. We observed that satellite cells from TRα1PV mice display impaired myoblast proliferation and in vitro myogenic differentiation compared to WT SCs. However, when COUP-TFII was silenced, the myogenic potential of TRα1PV satellite cells was restored, with a higher proliferation of myoblasts and a higher number of fully differentiated myotubes after 4 days of myogenic induction. RNAseq analysis on satellite cells from TRα1PV mice after COUP-TFII knockdown showed upregulation of genes involved in the myogenic pathway, such as Myod1 and Pax7, and of genes in the thyroid hormone signaling, such as Dio2. Ingenuity Pathway Analysis further showed activation of pathways regarding cell growth, differentiation, matrix remodeling along with muscle function, muscle contractility, and muscle contraction. These in vitro results suggest that by silencing COUP-TFII we promote the myogenic pathway and may further rescue the impaired phenotype of TRα1PV mice. These studies can help increase our knowledge of the mechanisms involved in thyroid hormone signaling in skeletal muscle regeneration, which will ultimately increase the possibility of designing more specific treatments for patients with thyroid hormone-induced myopathies. References: 1Milanesi, A., et al, Endocrinology 2016; 2Kaneshige, M. et al, Proc Natl Acad Sci U S 2001; 3Lee HJ, et al, Sci Rep. 2017.

Keywords

Thyroid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold