Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Single cell analysis of voltage-gated potassium channels that determines neuronal types of rat hypothalamic paraventricular nucleus neurons

Authors: Su-Yeon Lee; So Yeong Lee; Seung Yub Shin; Pan Dong Ryu; Soon-Tae Lee;

Single cell analysis of voltage-gated potassium channels that determines neuronal types of rat hypothalamic paraventricular nucleus neurons

Abstract

The hypothalamic paraventricular nucleus (PVN), a site for the integration of both the neuroendocrine and autonomic systems, has heterogeneous cell composition. These neurons are classified into type I and type II neurons based on their electrophysiological properties. In the present study, we investigated the molecular identification of voltage-gated K+ (Kv) channels, which determines a distinctive characteristic of type I PVN neurons, by means of single-cell reverse transcription-polymerase chain reaction (RT-PCR) along with slice patch clamp recordings. In order to determine the mRNA expression profiles, firstly, the PVN neurons of male rats were classified into type I and type II neurons, and then, single-cell RT-PCR and single-cell real-time RT-PCR analysis were performed using the identical cell. The single-cell RT-PCR analysis revealed that Kv1.2, Kv1.3, Kv1.4, Kv4.1, Kv4.2, and Kv4.3 were expressed both in type I and in type II neurons, and several Kv channels were co-expressed in a single PVN neuron. However, we found that the expression densities of Kv4.2 and Kv4.3 were significantly higher in type I neurons than in type II neurons. Taken together, several Kv channels encoding A-type K+ currents are present both in type I and in type II neurons, and among those, Kv4.2 and Kv4.3 are the major Kv subunits responsible for determining the distinct electrophysiological properties. Thus these 2 Kv subunits may play important roles in determining PVN cell types and regulating PVN neuronal excitability. This study further provides key molecular mechanisms for differentiating type I and type II PVN neurons.

Related Organizations
Keywords

Male, Neurons, Patch-Clamp Techniques, Real-Time Polymerase Chain Reaction, Membrane Potentials, Rats, Rats, Sprague-Dawley, Organ Culture Techniques, Shal Potassium Channels, Gene Expression Regulation, Animals, Paraventricular Hypothalamic Nucleus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?