
doi: 10.1109/4234.681359
A channel-optimized vector quantizer (COVQ) scheme that exploits the channel soft-decision information is proposed. The scheme is designed for stationary memoryless Gaussian and Gauss-Markov sources transmitted over BPSK-modulated Rayleigh-fading channels. It is demonstrated that substantial coding gains of 2-3 dB in channel signal-to-noise ratio (SNR) and 1-1.5 dB in source signal-to-distortion ratio (SDR) can be achieved over COVQ systems designed for discrete (hard-decision demodulated) channels.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
