Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuroendocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroendocrinology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroendocrinology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Differentiation of Pluripotent Stem Cells into Hypothalamic and Pituitary Cells

Authors: Hidetaka Suga;

Differentiation of Pluripotent Stem Cells into Hypothalamic and Pituitary Cells

Abstract

The hypothalamic-pituitary system is essential to maintain life and control systemic homeostasis, but it is negatively affected by various diseases, leading to serious symptoms. Embryonic stem (ES) cells differentiate into neuroectodermal progenitors when cultured as floating aggregates under serum-free conditions. Recently, our colleagues have shown that strict removal of exogenous patterning factors during early differentiation steps induced efficient generation of rostral hypothalamic-like progenitors from mouse ES cell-derived neuroectodermal cells. The use of growth factor-free chemically defined medium was critical for this induction. The ES cell-derived hypothalamic-like<b> </b>progenitors generated rostral-dorsal hypothalamic neurons, especially magnocellular vasopressinergic neurons that release the hormone upon stimulation. Subsequently, we reported efficient self-formation of 3-dimensional adenohypophysis tissues in aggregate cultures of mouse ES cells. The ES cells were stimulated to differentiate into nonneural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate and then treated with hedgehog. Self-organization of Rathke's pouch-like structures occurred at the interface of the two epithelia, as observed in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotropin-releasing hormone. Furthermore, when engrafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Our present research aims are to prepare hypothalamic and pituitary tissues from human induced pluripotent stem cells and establish effective transplantation techniques with clinical applications. To replicate the complex and precise control of the hypothalamic-pituitary system, regenerative medicine using pluripotent cells may be a hopeful option.

Keywords

Neurons, Pluripotent Stem Cells, Hypothalamo-Hypophyseal System, Mice, Pituitary Gland, Anterior, Cell Culture Techniques, Animals, Humans, Cell Differentiation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze