Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polyamine-substituted epoxy-grafted silica for aqueous metal recovery

Authors: Madjid Hadioui; Med Mecherri; Rastislav Šípoš; Yan Yvon; Patrick Sharrock;

Polyamine-substituted epoxy-grafted silica for aqueous metal recovery

Abstract

AbstractGlycidoxypropyltriethoxysilane (GPS) was used as a reactive silane to graft metal- complexing ligands onto silica gel in aqueous media under mild conditions. The synthesis entailed the reaction of GPS with silica gel, followed by grafting polyamine onto the epoxy functional group. GPS was added to silica gel in ethanol with 5 vol. % water and the mixture was air-dried for 24 h. Subsequently, excess amounts of polyamines: triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine were individually added to the silanised silica, followed by solvent evaporation and ovendrying at 60°C. The ligand-grafted silica gel particles showed a rapid heavy metal uptake in batch or flow-through experiments with capacities reaching 0.1 mmol g−1 for copper, zinc, cadmium, or lead ions. Columns packed with the modified particles could be readily regenerated by acid-washing with only a small decrease in activity. The particles could be used for the colourimetric detection of heavy metal pollution or for pre-concentration for analytical purposes. Competition between Cu2+, Zn2+, Pb2+, and Cd2+ ions for the three synthesised silica showed that Cu2+ ions were adsorbed more strongly than the other metal ions. The general method developed can be applied to graft other molecules with terminal amino groups for other purposes.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!