
doi: 10.5281/zenodo.7429974 , 10.5281/zenodo.5850149 , 10.5281/zenodo.8113401 , 10.5281/zenodo.7022712 , 10.5281/zenodo.7961775 , 10.5281/zenodo.6795201 , 10.5281/zenodo.7708402 , 10.5281/zenodo.7827191 , 10.5281/zenodo.10973000 , 10.5281/zenodo.6838902 , 10.5281/zenodo.7784932 , 10.5281/zenodo.6792430 , 10.5281/zenodo.10892107 , 10.5281/zenodo.7182758 , 10.5281/zenodo.6365070 , 10.5281/zenodo.8367059 , 10.5281/zenodo.11402184 , 10.5281/zenodo.10371446 , 10.5281/zenodo.10337209 , 10.5281/zenodo.7003673 , 10.5281/zenodo.12724302 , 10.5281/zenodo.7024517 , 10.5281/zenodo.8406067 , 10.5281/zenodo.11093733 , 10.5281/zenodo.10115523 , 10.5281/zenodo.7266639 , 10.5281/zenodo.5849917 , 10.5281/zenodo.10945161 , 10.5281/zenodo.6810847 , 10.5281/zenodo.11395266 , 10.5281/zenodo.8021093 , 10.5281/zenodo.7129432 , 10.5281/zenodo.10418134 , 10.5281/zenodo.8343682 , 10.5281/zenodo.11186306 , 10.5281/zenodo.6670392 , 10.5281/zenodo.8314735 , 10.5281/zenodo.7694936 , 10.5281/zenodo.10043533 , 10.5281/zenodo.12533934 , 10.5281/zenodo.10205573 , 10.5281/zenodo.10821867 , 10.5281/zenodo.5785680 , 10.5281/zenodo.7730656 , 10.5281/zenodo.7985120 , 10.5281/zenodo.6908395 , 10.5281/zenodo.12544153 , 10.5281/zenodo.7467113 , 10.5281/zenodo.7868623 , 10.5281/zenodo.7092212 , 10.5281/zenodo.7338345 , 10.5281/zenodo.7552029 , 10.5281/zenodo.8146216 , 10.5281/zenodo.6611676 , 10.5281/zenodo.10656993 , 10.5281/zenodo.8198993 , 10.5281/zenodo.8227797
doi: 10.5281/zenodo.7429974 , 10.5281/zenodo.5850149 , 10.5281/zenodo.8113401 , 10.5281/zenodo.7022712 , 10.5281/zenodo.7961775 , 10.5281/zenodo.6795201 , 10.5281/zenodo.7708402 , 10.5281/zenodo.7827191 , 10.5281/zenodo.10973000 , 10.5281/zenodo.6838902 , 10.5281/zenodo.7784932 , 10.5281/zenodo.6792430 , 10.5281/zenodo.10892107 , 10.5281/zenodo.7182758 , 10.5281/zenodo.6365070 , 10.5281/zenodo.8367059 , 10.5281/zenodo.11402184 , 10.5281/zenodo.10371446 , 10.5281/zenodo.10337209 , 10.5281/zenodo.7003673 , 10.5281/zenodo.12724302 , 10.5281/zenodo.7024517 , 10.5281/zenodo.8406067 , 10.5281/zenodo.11093733 , 10.5281/zenodo.10115523 , 10.5281/zenodo.7266639 , 10.5281/zenodo.5849917 , 10.5281/zenodo.10945161 , 10.5281/zenodo.6810847 , 10.5281/zenodo.11395266 , 10.5281/zenodo.8021093 , 10.5281/zenodo.7129432 , 10.5281/zenodo.10418134 , 10.5281/zenodo.8343682 , 10.5281/zenodo.11186306 , 10.5281/zenodo.6670392 , 10.5281/zenodo.8314735 , 10.5281/zenodo.7694936 , 10.5281/zenodo.10043533 , 10.5281/zenodo.12533934 , 10.5281/zenodo.10205573 , 10.5281/zenodo.10821867 , 10.5281/zenodo.5785680 , 10.5281/zenodo.7730656 , 10.5281/zenodo.7985120 , 10.5281/zenodo.6908395 , 10.5281/zenodo.12544153 , 10.5281/zenodo.7467113 , 10.5281/zenodo.7868623 , 10.5281/zenodo.7092212 , 10.5281/zenodo.7338345 , 10.5281/zenodo.7552029 , 10.5281/zenodo.8146216 , 10.5281/zenodo.6611676 , 10.5281/zenodo.10656993 , 10.5281/zenodo.8198993 , 10.5281/zenodo.8227797
What's Changed In this major release we are switching our graph computation backend from Aesara to PyTensor, which is a fork of Aesara under PyMC governance. Read the full announcement here: PyMC is Forking Aesara to PyTensor. The switch itself should be rather seamless and you can probably just update your imports: import aesara.tensor as at # old (pymc >=4,< 5) import pytensor.tensor as pt # new (pymc >=5) If you encounter problems updating please check the latest Discussions and don't hesitate to get in toch. Major Changes π β Switched the graph backend from Aesara to PyTensor Merged AePPL into pm.logprob submodule Deprecated ordered transform by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6375 β The log_likelihood is no longer computed by default but can be added with idata = pm.compute_log_likelihood(idata) or using pm.sample(idata_kwargs=dict(log_likelihood=True)) by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6374 Refactored Minibatch and stopped using deprecated MRG sampler by @ferrine in https://github.com/pymc-devs/pymc/pull/6304 New Features & Bugfixes π Added alternative parametrization for AssymetricLaplace by @aloctavodia in https://github.com/pymc-devs/pymc/pull/6337 Allow transforms to work with multiple-valued nodes by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6341 Support logp derivation in DensityDist by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6361 Docs & Maintenance π§ Removed NoDistribution from docs by @stestoll in https://github.com/pymc-devs/pymc/pull/6316 Bring back logps by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6272 Add issue templates by @ferrine in https://github.com/pymc-devs/pymc/pull/6327 Fix ordering Transformation for batched dimensions by @TimOliverMaier in https://github.com/pymc-devs/pymc/pull/6255 Fix transforms example by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6333 Bugfixes to increase robustness against unnamed dims by @michaelosthege in https://github.com/pymc-devs/pymc/pull/6339 Updated GOVERNANCE.md by @canyon289 in https://github.com/pymc-devs/pymc/pull/6358 Fixed overriding user provided mp_ctx strings to pm.sample() on M1 MacOS by @digicosmos86 in https://github.com/pymc-devs/pymc/pull/6363 Simplify measurable transform rewrites by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6370 Fail docs build on errors in notebooks by @michaelosthege in https://github.com/pymc-devs/pymc/pull/6324 Fix measurable stack and join with interdependent inputs by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6342 Fix transformed Scan values by @ricardoV94 in https://github.com/pymc-devs/pymc/pull/6343 Curated ecosystem references by @michaelosthege in https://github.com/pymc-devs/pymc/pull/6383 Switched run_mypy.py from pass-listing to fail-listing by @michaelosthege in https://github.com/pymc-devs/pymc/pull/6381 Runing pydocstyle in pre-commit by @michaelosthege in https://github.com/pymc-devs/pymc/pull/6382 New Contributors @digicosmos86 made their first contribution in https://github.com/pymc-devs/pymc/pull/6363 Full Changelog: https://github.com/pymc-devs/pymc/compare/v4.4.0...v5.0.0
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
