
The advent of single-cell multi-omics sequencing technology makes it possible for researchers to leverage multiple modalities for individual cells. Here, we present a protocol to perform integrative analysis of high-dimensional single-cell multimodal data using an interpretable deep learning technique called moETM. We describe steps for data preprocessing, multi-omics integration, inclusion of prior pathway knowledge, and cross-omics imputation. As a demonstration, we used the single-cell multi-omics data collected from bone marrow mononuclear cells (GSE194122) as in our original study. For complete details on the use and execution of this protocol, please refer to Zhou et al.1.
Science (General), Computational Biology, bioinformatics, single cell, Q1-390, Deep Learning, genomics, Protocol, Humans, computer sciences, Single-Cell Analysis
Science (General), Computational Biology, bioinformatics, single cell, Q1-390, Deep Learning, genomics, Protocol, Humans, computer sciences, Single-Cell Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
