
arXiv: 2106.11477
Recent high pressure experiments discovered abnormal double-dome superconductivities in the newly-synthesized kagome materials $A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs), which also host abundant emergent quantum phenomena such as charge density wave (CDW), anomalous Hall effect, nontrivial topological property, etc. In this work, by using first-principles electronic structure calculations, we have studied the CDW state, superconductivity, and topological property in CsV$_3$Sb$_5$ under pressures ($
7 pages, 4 figures
Superconductivity (cond-mat.supr-con), Condensed Matter - Materials Science, Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), Condensed Matter - Superconductivity, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Superconductivity (cond-mat.supr-con), Condensed Matter - Materials Science, Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), Condensed Matter - Superconductivity, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
