Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brain Pathologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Pathology
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Pathology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Pathology
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detection of HIV‐1 DNA in Microglia/ Macrophages, Astrocytes and Neurons Isolated from Brain Tissue with HIV‐1 Encephalitis by Laser Capture Microdissection

Authors: G, Trillo-Pazos; A, Diamanturos; L, Rislove; T, Menza; W, Chao; P, Belem; S, Sadiq; +3 Authors

Detection of HIV‐1 DNA in Microglia/ Macrophages, Astrocytes and Neurons Isolated from Brain Tissue with HIV‐1 Encephalitis by Laser Capture Microdissection

Abstract

In HIV‐1 encephalitis, HIV‐1 replicates predominantly in macrophages and microglia. Astrocytes also carry HIV‐1, but the infection of oligodendrocytes and neurons is debated. In this study we examined the presence of HIV‐1 DNA in different brain cell types in 6 paraffin embedded, archival post‐mortem pediatric and adult brain tissues with HIV‐1 encephalitis by Laser Capture Microdissection (LCM). Sections from frontal cortex and basal ganglia were stained by immunohistochemistry for CD68 (microglia), GFAP (astrocytes), MAP2 (neurons), and p24 (HIV‐1 positive cells) and different cell types were microdissected by LCM. Individual cells or pools of same type of cells were lysed, the cell lysates were subjected to PCR using HIV‐1 gag SK38/SK39 primers, and presence of HIV‐1 DNAwas confirmed by Southern blotting. HIV‐1 gag DNAwas consistently detected by this procedure in the frontal cortex and basal ganglia in 1 to 20 p24 HIV‐1 capsid positive cells, and in pools of 50 to 100 microglia/macrophage cells, 100 to 200 astrocytes, and 100 to 200 neurons in HIV‐1 positive cases but not in HIV‐1 negative controls. These findings suggest that in addition to microglia, the infection of astro‐cytes and neurons by HIV‐1 may contribute to the development of HIV‐1 disease in the brain.

Keywords

Adult, Neurons, Microscopy, Confocal, Adolescent, Macrophages, HIV Core Protein p24, Gene Products, gag, HIV Infections, Middle Aged, Basal Ganglia, Frontal Lobe, Micromanipulation, Astrocytes, DNA, Viral, HIV-1, Humans, Encephalitis, Viral, Microglia, Child, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    177
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
177
Top 10%
Top 10%
Top 1%
gold