
AbstractThe Prechtl General Movements Assessment (GMA) is increasingly recognized for its role in evaluating the integrity of the developing nervous system and predicting motor dysfunctions, particularly in conditions such as cerebral palsy (CP). However, the necessity for highly trained professionals has hindered the adoption of GMA as an early screening tool in some countries. In this study, we propose a deep learning-based motor assessment model (MAM) that combines infant videos and basic characteristics, with the aim of automating GMA at the fidgety movements (FMs) stage. MAM demonstrates strong performance, achieving an Area Under the Curve (AUC) of 0.967 during external validation. Importantly, it adheres closely to the principles of GMA and exhibits robust interpretability, as it can accurately identify FMs within videos, showing substantial agreement with expert assessments. Leveraging the predicted FMs frequency, a quantitative GMA method is introduced, which achieves an AUC of 0.956 and enhances the diagnostic accuracy of GMA beginners by 11.0%. The development of MAM holds the potential to significantly streamline early CP screening and revolutionize the field of video-based quantitative medical diagnostics.
Deep Learning, Science, Cerebral Palsy, Movement, Q, Infant, Humans, Sensitivity and Specificity, Article
Deep Learning, Science, Cerebral Palsy, Movement, Q, Infant, Humans, Sensitivity and Specificity, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
