
In plasticulture production systems, the conventional practice involves broadcasting pre-emergent herbicides over the entire surface of raised beds before laying plastic mulch. However, weed emergence predominantly occurs through the transplant punch-holes in the mulch, leaving most of the applied herbicide beneath the plastic, where weeds cannot grow. To address this issue, we developed and evaluated a precision spraying system designed to target herbicide application to the transplant punch-holes. A dataset of 3378 images was manually collected and annotated during a tomato experimental trial at the University of Florida. A YOLOv8x model with a p2 output layer was trained, converted to TensorRT® to improve the inference time, and deployed on a custom-built computer. A Python-based graphical user interface (GUI) was developed to facilitate user interaction and the control of the smart sprayer system. The sprayer utilized a global shutter camera to capture real-time video input for the YOLOv8x model, which activates or disactivates a TeeJet solenoid for precise herbicide application upon detecting a punch-hole. The model demonstrated excellent performance, achieving precision, recall, mean average precision (mAP), and F1score exceeding 0.90. Field tests showed that the smart sprayer reduced herbicide use by up to 69% compared to conventional broadcast methods. The system achieved an 86% punch-hole recognition rate, with a 14% miss rate due to challenges such as plant occlusion and variable lighting conditions, indicating that the dataset needs to be improved. Despite these limitations, the smart sprayer effectively minimized off-target herbicide application without causing crop damage. This precision approach reduces chemical inputs and minimizes the potential environmental impact, representing a significant advancement in sustainable plasticulture weed management.
weed control, precision agriculture, Agriculture (General), Engineering (General). Civil engineering (General), S1-972, You Only Look Once, vegetable production, object detection model, smart sprayer, TA1-2040
weed control, precision agriculture, Agriculture (General), Engineering (General). Civil engineering (General), S1-972, You Only Look Once, vegetable production, object detection model, smart sprayer, TA1-2040
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
