Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Calibrating Trip Distribution Neural Network Models with Different Scenarios of Transfer Functions Used in Hidden and Output Layers

Authors: Gusri Yaldi; Imelda M. Nur; - Apwiddhal;

Calibrating Trip Distribution Neural Network Models with Different Scenarios of Transfer Functions Used in Hidden and Output Layers

Abstract

The transfer function is used to process the summation outputs in the hidden and output nodes. It can generally be categorized as either a non-linear or linear function. Examples are Sigmoid and Purelin functions representing non-linear and linear transfer functions. It is often mentioned that there is no standard guideline in the transfer function selection, and the Sigmoid or Logsig is widely used. However, the transfer function and training algorithm have a procedural relationship in training Multilayer Feedforward Neural Network (MLFFNN), a famous Artificial Neural Network model structure. In the feedforward stage, this function transforms the linear summation output to either linear (Purelin) or non-linear form (Sigmoid). In the backpropagation stage, this function is used in calculating the magnitude of change in the connection weights involving its derivative. Nine scenarios of MLFFNN were developed based on different transfer functions used in both hidden and output layers. In order to make fair comparisons, each scenario has the same initial connection weight. The modelling is conducted at the calibration level only; however, it involves different levels of complexity. It was calibrated by using the Levenberg-Marquard training algorithm. The results suggest that some calibrations failed and negative estimations occurred once non-linear transfer functions were used in hidden and output layers. It was found that Purelin was superior to other transfer functions. However, it has a weakness which is its negative estimations.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold