Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied M...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Microbiology
Article . 2001 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A rapid molecular assay for the detection of antibiotic resistance determinants in causal agents of infective endocarditis

Authors: P.G. Murphy; M. Crowe; B.C. Millar; Colin E. Goldsmith; R.B. McClurg; S. Vincent; N. Woodford; +3 Authors

A rapid molecular assay for the detection of antibiotic resistance determinants in causal agents of infective endocarditis

Abstract

To develop and employ a PCR amplification system, directly from clinical specimens, for the rapid molecular detection of common antimicrobial resistance genes for streptococci, staphylococci and enterococci organisms causing infective endocarditis (IE).Eleven antibiotic resistance genes were targeted by PCR along with four identification-related loci. Blood culture and heart valve material from staphylococcal endocarditis patients were directly examined for methicillin resistance. PCR conditions were optimized for the following antibiotic resistance loci: staphylococci (mecA, aacA-aphD), streptococci (PBP 1A, PBP 2B, gyrB, parE) and enterococci (vanA, vanB, vanC-1, vanC-2, aacA-aphD, aphA3). The presence of methicillin resistance was confirmed in one of the eight IE patients examined.This study presents a PCR amplification system for the detection of antibiotic resistance genes. Detection of such genes may indicate susceptibility of the causal agents of IE to commonly prescribed antimicrobial agents.Rapid detection of antibiotic resistant organisms may reduce the use of inappropriate antibiotic agents or enable the use of the most appropriate combinations of antibiotics, other than those that would normally be prescribed empirically for IE. Such a method may be particularly valuable in cases of culture-negative endocarditis. Detection of antibiotic resistance genes by molecular-based techniques, namely PCR, will allow more directed antibiotic therapy and may also provide opportunities for earlier identification of resistant organisms.

Keywords

Staphylococcus, Streptococcus, Drug Resistance, Microbial, Endocarditis, Bacterial, Penicillins, Heart Valves, Polymerase Chain Reaction, Gram-Positive Cocci, Methicillin, Genes, Bacterial, RNA, Ribosomal, 16S, Humans, Methicillin Resistance, Enterococcus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
bronze