Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Abstract 2516: Inhibition of Β-catenin/CBP signaling in oral cancer alters EGFR N-glycosylation and abundance

Authors: Kevin B. Chandler; Khalid Alamoud; Vinay K. Kartha; Khikmet Sadykov; Stefano Monti; Maria A. Kukuruzinska; Catherine E. Costello;

Abstract 2516: Inhibition of Β-catenin/CBP signaling in oral cancer alters EGFR N-glycosylation and abundance

Abstract

Abstract Head and neck cancer is a debilitating malignancy, with the majority of cases arising in the oral cavity as oral squamous cell carcinoma (OSCC). A major driver of OSCC is the epidermal growth factor receptor (EGFR), whose activity is aberrantly upregulated in >90% of tumors. EGFR is highly modified with N-linked glycans; fucosylation of N-linked glycans interferes with EGFR dimerization and activation. Thus, post-transcriptional changes may govern EGFR activity. In OSCC, EGFR signaling converges on Wnt/ Β-catenin activity, known to play pivotal roles in the pathobiology of this malignancy through the interaction of nuclear Β-catenin with the histone acetyltransferase CREB-binding protein (CBP). We have shown that a small-molecule inhibitor of Β-catenin-CBP interaction, ICG-001, interferes with OSCC proliferation and aggressive features in cellular, zebrafish and murine models. Also, OSCC-cell line derived mouse tumor xenografts exhibit reduced EGFR abundance, and genomic analyses show a positive correlation between ICG-001 and EGFR inhibition. Given that modification of EGFR with N-glycans impacts its cell-surface localization and signaling, we hypothesized that ICG-001 affected EGFR N-glycosylation. We immunoprecipitated EGFR from indolent CAL27 and metastatic HSC-3 cells after treatment with ICG-001 or vehicle control and determined the effect of inhibition of Β-catenin/CBP activity on its N-glycosylation status. We subjected immunoprecipitated EGFR to proteolysis, performed glycopeptide enrichment via hydrophilic interaction liquid chromatography (HILIC), analyzed glycopeptides with an Agilent 6550 Quadrupole Time-of-Flight (Q-TOF) MS using collision-induced dissociation, and compared site-specific glycoform patterns for the two cell types +/- ICG-001. At specific N-glycosylation sites, EGFR from indolent CAL27 cells had highly fucosylated N-glycans, while EGFR from metastatic HSC-3 cells displayed N-linked glycans with a paucity of fucose. Treatment of HSC-3 cells with ICG-001 revealed higher fucosylation at sites N151, N420, suggesting that ICG-001 promoted modification with terminal fucose, potentially inhibiting EGFR signaling. Parallel analyses of gene expression signatures in response to ICG-001 treatment in HSC-3 cells showed increased transcriptional expression of fucosyltransferases, FUT2 and FUT3 that fucosylate residues on the outer arms of N-linked glycans. Our studies suggest that the Β-catenin/CBP axis promotes EGFR signaling by inhibiting its fucosylation through downregulation of FUT2 and FUT3 expression and activity. Thus, inhibition of Β-catenin/CBP signaling with ICG-001 may serve as a therapeutic approach to downregulate EGFR protumorigenic activity in OSCC. Supported by NIH grants P41 GM104603 (CEC), F32 CA196157 (KBC), and by the Evans Center for Interdisciplinary Biomedical Research ARC #9950000118 (MAK). Citation Format: Kevin B. Chandler, Khalid Alamoud, Vinay K. Kartha, Khikmet Sadykov, Stefano Monti, Maria A. Kukuruzinska, Catherine E. Costello. Inhibition of Β-catenin/CBP signaling in oral cancer alters EGFR N-glycosylation and abundance [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2516.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!