
doi: 10.1109/ats.2004.84
Logical reversibility occurs in low-power applications and is an essential feature of quantum circuits. Of special interest are reversible circuits constructed from a class of reversible elements called k-CNOT (controllable NOT) gates. We review the characteristics of k-CNOT circuits and observe that traditional fault models like the stuck-at model may not accurately represent their faulty behavior or test requirements. A new fault model, the missing gate fault (MGF) model, is proposed to better represent the physical failure modes of quantum technologies. It is shown that MGFs are highly testable, and that all MGFs in an N-gate k-CNOT circuit can be detected with from one to [N/2] test vectors. A design-for-test (DFT) method to make an arbitrary circuit fully testable for MGFs using a single test vector is described. Finally, we present simulation results to determine (near) optimal test sets and DFT configurations for some benchmark circuits.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
