Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2007 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-Cell-Autonomous Regulation of GABAergic Neuron Development by Neurotrophins and the p75 Receptor

Authors: Susan J. Birren; Sarah R. Rollor; Pao-Yen Lin; Jeanine M. Hinterneder;

Non-Cell-Autonomous Regulation of GABAergic Neuron Development by Neurotrophins and the p75 Receptor

Abstract

Basal forebrain GABAergic and cholinergic circuits regulate the activity of cholinergic projections to the cortex and hippocampus. Because these projections influence cortical development and function, the development of basal forebrain excitatory and inhibitory neurons is critical for overall brain development. We show that the neurotransmitter phenotype of these neurons is developmentally regulated by neurotrophins and the p75 receptor. Neurotrophins (nerve growth factor and brain-derived neurotrophic factor) increased the number of both cholinergic and GABAergic neurons in neonatal basal forebrain neuron cultures from the region of the medial septum. However, the p75 receptor is required only for neurotrophin-dependent expansion of the GABAergic, not the cholinergic, population. Neurotrophin-induced GABAergic development can be rescued inp75−/−cultures by expression of a p75 rescue construct in neighboring cells or by treatment with medium collected from neurotrophin-treated wild-type cultures. Because p75 is not expressed in basal forebrain GABAergic neurons, this defines a new, non-cell-autonomous mechanism of p75 action in which ligand binding results in release of a soluble factor that modifies neurotrophin responses of nearby neurons. p75 is also required for the maintenance of basal forebrain GABAergic neuronsin vivo, demonstrating that p75-mediated interactions between cholinergic and GABAergic neurons regulate the balance of excitatory and inhibitory components of basal forebrain circuits.

Related Organizations
Keywords

Neurons, Cell Death, Cell Differentiation, Mice, Transgenic, Neural Inhibition, Receptor, Nerve Growth Factor, Mice, Inbred C57BL, Mice, Prosencephalon, Animals, Newborn, Animals, Humans, Nerve Growth Factors, Cells, Cultured, gamma-Aminobutyric Acid, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
hybrid