
Abstract A major challenge in enhancing the resilience of communities stems from current approaches used to identify needs and strategies that build the capacity of jurisdictions to mitigate loss and improve recovery. A new generation of resilience-based planning processes has emerged in the last several years that integrate goals of community well-being and identity into recovery-based performance measurement frameworks. Specific tools and refined guidance are needed to facilitate evidence-based development of recovery estimates. This article presents the participatory modeling process, a planning system designed to develop recovery-based resilience measurement frameworks for community resilience planning initiatives. Stakeholder engagement is infused throughout the participatory modeling process by integrating disaster recovery simulation modeling into community resilience planning. Within the process, participants get a unique opportunity to work together to deliberate on community concerns through facilitated participatory modeling. The participatory modeling platform combines the DESaster recovery simulation model and visual analytics interfaces. DESaster is an open source Python Library for creating discrete event simulations of disaster recovery. The simulation model was developed using a human-centered design approach whose goal is to be open, modular, and extensible. The process presented in this article is the first participatory modeling approach for analyzing recovery to aid creation of community resilience measurement frameworks.
Disasters, Recovery-based performance targets, TA495, Disaster recovery, Community resilience planning, Participatory modeling, Disasters and engineering, Simulation modeling
Disasters, Recovery-based performance targets, TA495, Disaster recovery, Community resilience planning, Participatory modeling, Disasters and engineering, Simulation modeling
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
