Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Microbiolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 1997 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription

Authors: J. Garin; I. Delic-Attree; Paulette M. Vignais; Bertrand Toussaint;

Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription

Abstract

Pseudomonas aeruginosa strains infecting patients with cystic fibrosis (CF) acquire a mucoid phenotype due to overproduction of alginate. The key enzyme in alginate synthesis is AlgD, whose promoter is transcriptionally active in mucoid strains and under the control of several trans‐acting factors, including the integration host factor (IHF). The algD promoter (palgD ) contains two IHF‐binding sites (ihf1 and ihf2 ). Study of IHF binding to ihf2 of palgD, by electrophoretic mobility‐shift assays, led to the discovery of a protein of 36 kDa (p36) able to bind downstream from ihf2, to the 3′ region of palgD. The gene encoding p36 was isolated from the mucoid strain CHA of P. aeruginosa and sequenced. It can encode a 324‐amino‐acid protein, which shares a high degree of sequence identity (63%) with CysB from Escherichia coli and from Salmonella typhimurium, a transcriptional factor of the LysR superfamily. Furthermore, both p36 and S. typhimurium CysB bind the same site of palgD ; p36 was therefore termed CysB and its structural gene was called cysB. Next to cysB, on the opposite DNA strand, cysH was capable of encoding a protein sharing 26% identity with CysH (PAPS reductase) of E. coli and an even greater identity (54%) with the nucleotide‐deduced protein from Arabidopsis. A CysB‐deficient mutant of CHA, constructed by insertional inactivation of cysB, was a cysteine auxotroph and was unable to form a specific complex with palgD in vitro. Activity of palgD in the cysB mutant, in CHA and in the non‐mucoid strain PAO was assessed by the use of a transcriptional algD–xylE fusion. Cells of PAO and of the cysB mutant grown in minimal media in the presence of 0.3 M NaCl exhibited a palgD activity, which was 10% or less that of the mucoid strain CHA. Thus, P. aeruginosa CysB can act as an activator of algD expression.

Keywords

DNA, Bacterial, Integration Host Factors, Transcriptional Activation, Binding Sites, Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Bacterial, Sequence Analysis, DNA, DNA-Binding Proteins, Mutagenesis, Insertional, Bacterial Proteins, Genes, Bacterial, Pseudomonas aeruginosa, Carbohydrate Dehydrogenases, Cloning, Molecular, Promoter Regions, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze