Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Automatic Control
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decentralized Integral Controllability Analysis Based on a New Unconditional Stability Criterion

Authors: Su, Steven W.; Savkin, Andrey V.; Guo, Ying; Celler, Branko G.; Nguyen, Hung T.;

Decentralized Integral Controllability Analysis Based on a New Unconditional Stability Criterion

Abstract

Decentralized integral control is one of the most popular control strategies used in practice. An important issue associated with this strategy is the analysis of Decentralized Integral Controllability (DIC). Campo and Morari showed that for a given process, if its steady state gain matrix is not critically D-stable, its DIC can be determined by using its steady state gain matrix. This technical note investigates decentralized integral control with a special focus on the DIC analysis of processes whose steady state gain matrices are critically D-stable. First, we introduce a new unconditional stability criterion. Then, by using the proposed criterion, it is proved that for up to four-channel processes, their DIC can be totally determined by their steady state gain matrices. We also present a multi-loop PI control design method, which provides an explicit lower bound of the proportional coefficient to achieve decentralized unconditional stability for low dimensional processes. For higher dimensional processes, this technical note presents a six-channel process whose DIC property cannot be determined only by its steady state gain matrix, contradicting the view of some other researchers.

Keywords

003

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!