
AbstractGrain boundaries (GBs) profoundly influence the properties and performance of materials, emphasizing the importance of understanding the GB structure and phase behavior. As recent computational studies have demonstrated the existence of multiple GB phases associated with varying the atomic density at the interface, we introduce a validated, open-source GRand canonical Interface Predictor (GRIP) tool that automates high-throughput, grand canonical optimization of GB structures. While previous studies of GB phases have almost exclusively focused on cubic systems, we demonstrate the utility of GRIP in an application to hexagonal close-packed titanium. We perform a systematic high-throughput exploration of tilt GBs in titanium and discover previously unreported structures and phase transitions. In low-angle boundaries, we demonstrate a coupling between point defect absorption and the change in the GB dislocation network topology due to GB phase transformations, which has important implications for the accommodation of radiation-induced defects.
Condensed Matter - Materials Science, Science, Q, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, 530, Article
Condensed Matter - Materials Science, Science, Q, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, 530, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
