Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2009 . Peer-reviewed
Data sources: Crossref
Human Molecular Genetics
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pax2 gene dosage influences cystogenesis in autosomal dominant polycystic kidney disease

Authors: Paul Goodyer; Jing Zhou; Michael R. Eccles; Diana M. Iglesias; G. G. Germino; Cherie Stayner; Lana M. Ellis;

Pax2 gene dosage influences cystogenesis in autosomal dominant polycystic kidney disease

Abstract

Mutations in PKD1 cause dominant polycystic kidney disease (PKD), characterized by large fluid-filled kidney cysts in adult life, but the molecular mechanism of cystogenesis remains obscure. Ostrom et al. [Dev. Biol., 219, 250-258 (2000)] showed that reduced dosage of Pax2 caused increased apoptosis, and ameliorated cystogenesis in Cpk mutant mice with recessive PKD. Pax2 is expressed in condensing metanephrogenic mesenchyme and arborizing ureteric bud, and plays an important role in kidney development. Transient Pax2 expression during fetal kidney mesenchyme-to-epithelial transition, as well as in nascent tubules, is followed by marked down-regulation of Pax2 expression. Here, we show that in humans with PKD, as well as in Pkd1(del34/del34) mutant mice, Pax2 was expressed in cyst epithelial cells, and facilitated cyst growth in Pkd1(del34/del34) mutant mice. In Pkd1(del34/del34) mutant kidneys, the expression of Pax2 persisted in nascent collecting ducts. In contrast, homozygous Pkd1(del34/del34) fetal mice carrying mutant Pax2 exhibited ameliorated cyst growth, although reduced cystogenesis was not associated with increased apoptosis. Pax2 expression was attenuated in nascent collecting ducts and absent from remnant cysts of Pkd1(del34/del34)/Pax2(1Neu/+) mutant mice. To investigate whether the Pkd1 gene product, Polycystin-1, regulates Pax2, MDCK cells were engineered constitutively expressing wild-type Pkd1; Pax2 protein levels and promoter activity were both repressed in MDCK cells over-expressing Pkd1, but not in cells without transgenic Pkd1. These data suggest that polycystin-1-deficient tubular epithelia persistently express Pax2 in ADPKD, and that Pax2 or its pathway may be an appropriate target for the development of novel therapies for ADPKD.

Keywords

Heterozygote, Phosphoric Diester Hydrolases, Blotting, Western, Homozygote, PAX2 Transcription Factor, Gene Dosage, Apoptosis, Kidney, Polycystic Kidney, Autosomal Dominant, Immunohistochemistry, Mice, Mutant Strains, Cell Line, Mice, Animals, Humans, Pyrophosphatases, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze