Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Tyrosinase mRNA in Mouse Melanoma Cells by α-Melanocyte–Stimulating Hormone

Authors: Todd D. Corn; Bryan B. Fuller; Deepa Rungta;

Regulation of Tyrosinase mRNA in Mouse Melanoma Cells by α-Melanocyte–Stimulating Hormone

Abstract

Cloudman S-91 mouse melanoma cells respond to alpha-melanocyte-stimulating hormone) by demonstrating a marked increase in tyrosinase activity (O-diphenol-O2 oxidoreductase, EC 1.14.18.1). This increase is the result of increased levels of tyrosinase mRNA with a subsequent increase in tyrosinase abundance. Our studies were carried out to determine the effect of melanocyte-stimulating hormone on tyrosinase gene transcription and to measure the kinetics of the hormone-induced increase in tyrosinase mRNA. When melanoma cells were exposed continuously to melanocyte-stimulating hormone for 6 d, a large but transient increase in both tyrosinase mRNA abundance and enzyme activity were observed. The maximum increase in tyrosinase mRNA occurred 60 h after melanocyte-stimulating hormone stimulation and was followed by a decline in message levels even though cells were continuously exposed to hormone. Results of nuclear run-off transcription assays showed that melanocyte-stimulating hormone caused a slow increase in the rate of transcription of the tyrosinase gene with a maximal 6-fold stimulation occurring at 48 h. In cells treated with the ribonucleic acid synthesis inhibitor, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, tyrosinase mRNA levels decayed with a half-life of 4-5 h. This decay rate was unaffected by treatment of cells with melanocyte-stimulating hormone, indicating that the hormone does not act to stabilize tyrosinase ribonucleic acid. Inhibition of protein synthesis by treatment with cycloheximide had no effect on the melanocyte-stimulating hormone-induced increase in tyrosinase messenger ribonucleic acid levels suggesting that ongoing protein synthesis is not required for, at least, the initial stimulation of tyrosinase gene transcription by melanocyte-stimulating hormone.

Keywords

Chloramphenicol O-Acetyltransferase, Transcription, Genetic, Monophenol Monooxygenase, Melanoma, Experimental, Cell Biology, Dermatology, Biochemistry, Gene Expression Regulation, Enzymologic, Mice, cAMP, Cyclic AMP, cycloheximide, Animals, Melanocyte-Stimulating Hormones, RNA, Messenger, Cycloheximide, transcription, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average
hybrid