Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1996 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1997
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polygenic Mutation in Drosophila melanogaster: Genetic Interactions Between Selection Lines and Candidate Quantitative Trait Loci

Authors: James D. Fry; Trudy F. C. Mackay;

Polygenic Mutation in Drosophila melanogaster: Genetic Interactions Between Selection Lines and Candidate Quantitative Trait Loci

Abstract

Abstract We have investigated genetic interactions between spontaneous mutations affecting abdominal and sternopleural bristle number that have accumulated in 12 long-term selection lines derived from an inbred strain, and mutations at 14 candidate bristle number quantitative trait loci. The quantitative test for complementation was to cross the selection lines to an inbred wild-type strain (the control cross) and to a derivative of the control strain into which the mutant allele at the candidate locus to be tested was substituted (the tester strain). Genetic interactions between spontaneous mutations affecting bristle number and the candidate locus mutations were common, and in several cases the interaction effects were different in males and females. Analyses of variance of the (tester – control) differences among and within groups of replicate lines selected in the same direction for the same trait showed significant group effects for several candidate loci. Genetically, the interactions could be caused by allelism of, and/or epistasis between, spontaneous mutations in the selection lines and the candidate locus mutations. It is possible that much of the response to selection was from new mutations at candidate bristle number quantitative trait loci, and that for some of these loci, mutation rates were high.

Keywords

Male, Analysis of Variance, Genetic Complementation Test, Chromosome Mapping, Genes, Insect, Drosophila melanogaster, Mutation, Animals, Female, Selection, Genetic, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Average
Top 10%
Top 10%
hybrid