Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC

Authors: Jarin Hongpaisan; Daniel L. Alkon;

A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC

Abstract

Using both scanning confocal and electron microscopic morphometric measurements, we analyzed single dendritic spines of CA1 pyramidal cells in the hippocampi of water maze-trained rats vs. controls. Two days after completion of all training, we observed a memory-specific increase in the number of mushroom spines—all of which make synaptic contacts—but not in the numbers of filopodia or stubby or thin spines, as quantified with double-blind protocols in both scanning confocal and electron microscopic images. This memory-specific increase of mushroom spine number was enhanced by the PKC activator and candidate Alzheimer's disease therapeutic bryostatin, blocked by the PKCα-isozyme blocker Ro 31-8220, and accompanied by increases in the number of “perforated” postsynaptic densities, increased numbers of presynaptic vesicles, and the increased occurrence of double-synapse presynaptic boutons associated with the mushroom spines. These and other confocally imaged immunohistochemical results described here involving PKC substrates indicate that individual mushroom spines provide structural storage sites for long-term associative memory and sites for memory-specific synaptogenesis that involve PKC-regulated changes of spine shape, as well as PKC-regulated changes of pre- and postsynaptic ultrastructure.

Keywords

Indoles, Protein Kinase C-alpha, Dendritic Spines, Pyramidal Cells, Secretory Vesicles, RNA-Binding Proteins, Rats, Inbred Strains, Bryostatins, Axons, Rats, Memory, Animals, RNA, Messenger, Maze Learning, Protein Kinase Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    142
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
142
Top 10%
Top 10%
Top 10%
bronze