Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Environmental Informatics
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Inexact Two-Stage Quadratic Program for Water Resources Planning

Authors: G.H. Huang;

An Inexact Two-Stage Quadratic Program for Water Resources Planning

Abstract

An inexact two-stage stochastic quadratic programming (ITQP) model is developed for water resources management under uncertainty. The model is a hybrid of inexact quadratic programming and two-stage stochastic programming. It can deal with the uncertainties presented as both probabilities and intervals. Moreover, it can deal with nonlinearities in objective function to reflect the effects of marginal utility on the benefit and cost components. Using quadratic form in the objective function rather than linear one, the ITQP can minimize the unfair competition of water resources among multiple users under uncertain water conditions. In the modeling formulation, penalties are imposed when policies expressed as the promised water supply targets are violated. In its solution process, the ITQP model is transformed into two deterministic submodels based on an interactive algorithm and a derivative algorithm, which correspond to the lower and upper bounds of the desired objective. Interval solutions, which are feasible and stable in the given decision space, can then be obtained by solving the two submodels sequentially. The developed method is then applied to a case study of water resources management planning. The results indicate that reasonable solutions have been obtained. They can help provide bases for identifying desired water-allocation plans with maximized system benefit and minimized system-failure risk.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Average
bronze