Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2008 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transient Local Depletion of Foxp3+ Regulatory T Cells during Recovery from Colitis via Fas/Fas Ligand-Induced Death

Authors: Colin Reardon; Arthur Wang; Derek M. McKay;

Transient Local Depletion of Foxp3+ Regulatory T Cells during Recovery from Colitis via Fas/Fas Ligand-Induced Death

Abstract

Abstract Regulatory T cells (Tregs) play a fundamental role in regulating the immune system in health and disease. Considerable evidence exists demonstrating that transfer of Tregs can cure colitis and a variety of other inflammatory disorders. However, little is known about the effects of inflammation on resident Tregs. Mice (BALB/c or C57BL/6) treated with an intrarectal instillation of the haptenizing agent 2,4-dinitrobenzene sulfonic acid (DNBS) develop an acute inflammatory disease, the histopathology of which peaks at 3 days posttreatment and resolves spontaneously thereafter. In this study we demonstrate that DNBS (or oxazolone)-induced colitis causes a depletion of colonic Foxp3+ Tregs 8 days posttreatment, while the proportion of Foxp3+ cells in the ileum, mesenteric lymph nodes, and spleen remains unchanged. Replenishment of the colonic Treg population was associated with the reappearance of mucosal homing (α4β7+) CD4+Foxp3+ Tregs. Assessing the mechanism of local Treg depletion, we found no evidence to implicate cytokine-induced phenotypic switching in the Foxp3+ population or increased SMAD7 expression despite the essential role that TGF-β has in Foxp3+ Treg biology. Increased Fas ligand (FasL) expression was observed in the colon of colitic mice and in vitro stimulation with a Fas cross-linking Ab resulted in apoptosis of CD4+Foxp3+ but not CD4+Foxp3− cells. Furthermore, DNBS-induced colitis in Fas/FasL-deficient mice did not result in depletion of colonic Tregs. Finally, adoptively transferred synergic Fas−/− but not Fas+/+ Tregs were protected from depletion in the colon 8 days post-DNBS treatment, thus substantiating the hypothesis that inflammation-induced local depletion of Foxp3+ Tregs in the colon of mice occurs via Fas/FasL-mediated death.

Related Organizations
Keywords

Male, Mice, Knockout, Mice, Inbred BALB C, Fas Ligand Protein, Time Factors, Apoptosis, Forkhead Transcription Factors, Colitis, T-Lymphocytes, Regulatory, Mice, Mutant Strains, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Lymphopenia, Animals, Dinitrofluorobenzene, fas Receptor, Intestinal Mucosa, Haptens

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze