
arXiv: 1708.03843
The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound for triangle‐free graphs G, avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit in a somewhat unusual setting). On the other hand, we extend Molloy's result to DP‐coloring (also known as correspondence coloring), a generalization of list coloring introduced recently by Dvořák and Postle.
list coloring, Coloring of graphs and hypergraphs, DP-coloring, triangle-free graphs, entropy compression, graph coloring, FOS: Mathematics, Mathematics - Combinatorics, local lemma, Combinatorics (math.CO)
list coloring, Coloring of graphs and hypergraphs, DP-coloring, triangle-free graphs, entropy compression, graph coloring, FOS: Mathematics, Mathematics - Combinatorics, local lemma, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
