
pmid: 10469844
Mouse genetic models for common human diseases have been studied for most of the 20th century. Although many polygenic strain differences and spontaneous single gene mutants have been extensively characterized over the years, knowing their innermost secrets ultimately requires the identity of the mutated genes. One group of neurological mutants, detected initially due to cerebellar dysfunction, was identified as models for epilepsy when they were unexpectedly found to have spike-wave seizures associated with behavioral arrest, a central feature of absence or petit-mal epilepsy. A further surprise was that recently identified defective genes encode different subunits of voltage-gated Ca(2+)channels (VGCCs), implying common seizure mechanisms. In this review we first consider these spontaneous mutants with VGCC defects in the context of other mouse models for epilepsy. Then, from the new wave of genetic and functional studies of these mutants we discuss their prospects for yielding insight into the molecular mechanisms of epilepsy.
570, Nerve Tissue Proteins, Calcium Channels, P-Type, Calcium Channels, Q-Type, Mice, Mice, Neurologic Mutants, Calcium Channels, N-Type, Epilepsy, Absence, Animal Ataxia Mice, 616, Mutation, Animals, Ataxia, Calcium Channels
570, Nerve Tissue Proteins, Calcium Channels, P-Type, Calcium Channels, Q-Type, Mice, Mice, Neurologic Mutants, Calcium Channels, N-Type, Epilepsy, Absence, Animal Ataxia Mice, 616, Mutation, Animals, Ataxia, Calcium Channels
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
