
pmid: 9612231
Cardiac fibroblasts are responsible for the production of the extracellular matrix of the heart, with alterations of fibroblast function implicated in myocardial infarction and cardiac hypertrophy. Here the role of heterotrimeric GTP-binding proteins (G proteins) in the mechanotransduction of strain in rat cardiac fibroblasts was investigated. Cells in an equibiaxial stretch device were incubated with the photoreactive GTP analog azidoanalido [α-32P]GTP (AAGTP) and were subjected to various regimens of strain. Autoradiographic analysis showed a 42-kDa protein labeled for cells exposed to 12 cycles of 3% strain or 6 cycles of 6% strain over 60 s (strain rate of 1.2%/s), whereas 6 cycles of 3% strain (0.6%/s) elicited no measurable response. To further investigate the role of strain rate, a single 6% cycle over 10 or 60 s (1.2% and 0.2%/s, respectively) was applied, with the more rapid cycle stimulating AAGTP binding, whereas the lower strain rate showed no response. In cells subjected to a single 6% cycle/10 s, immunoprecipitation identified the AAGTP-labeled 42-kDa band as the G protein subunits Gαq and Gαi1. These results demonstrate that G protein activation represents one of the early mechanotransduction events in cardiac fibroblasts subjected to mechanical strain, with the rate at which the strain is applied modulating this response.
Male, Rats, Sprague-Dawley, GTP-Binding Proteins, Myocardium, Animals, Guanosine Triphosphate, Stress, Mechanical, Fibroblasts, Precipitin Tests, Cells, Cultured, Rats
Male, Rats, Sprague-Dawley, GTP-Binding Proteins, Myocardium, Animals, Guanosine Triphosphate, Stress, Mechanical, Fibroblasts, Precipitin Tests, Cells, Cultured, Rats
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
