Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2018 . Peer-reviewed
Data sources: Crossref
Science
Article . 2018 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2018
Data sources: Datacite
ZENODO
Article . 2018
Data sources: Datacite
Science
Article . 2018
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes

Authors: Babayan, Simon A.; Orton, Richard J.; Streicker, Daniel G.;

Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes

Abstract

Predicting hosts and vectorsDuring outbreaks of mysterious infections, events can rapidly become dangerous and confusing. A combination of increasing experience with outbreaks and genome-sequencing technology now means the pathogen can often be identified within days. But for some of the most frightening viral pathogens, the originating hosts and possible vectors often remain obscure. Babayanet al.took sequence data from more than 500 single-stranded RNA viruses (see the Perspective by Woolhouse) and used machine-learning algorithms to extract evolutionary signals imprinted in the virus sequence that offer information about its original hosts and if an arthropod vector, and what type, plays a part in the virus's natural ecology.Science, this issue p.577; see also p.524

Keywords

Multidisciplinary, Arthropod Vectors, bats, bat, Genome, Viral, Genomics, Biodiversity, Communicable Diseases, Emerging, Evolution, Molecular, Machine Learning, RNA Virus Infections, Chiroptera, Epidemiological Monitoring, Host-Pathogen Interactions, Mammalia, Animals, Humans, RNA Viruses, Animalia, Chordata, Disease Reservoirs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    166
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
166
Top 1%
Top 10%
Top 1%
Green
bronze