
doi: 10.3390/app112411584
handle: 11585/840899
The real-time analysis of Big Data streams is a terrific resource for transforming data into value. For this, Big Data technologies for smart processing of massive data streams are available, but the facilities they offer are often too raw to be effectively exploited by analysts. RAM3S (Real-time Analysis of Massive MultiMedia Streams) is a framework that acts as a middleware software layer between multimedia stream analysis techniques and Big Data streaming platforms, so as to facilitate the implementation of the former on top of the latter. RAM3S has been proven helpful in simplifying the deployment of non-parallel techniques to streaming platforms, such as Apache Storm or Apache Flink. In this paper, we show how RAM3S has been updated to incorporate novel stream processing platforms, such as Apache Samza, and to be able to communicate with different message brokers, such as Apache Kafka. Abstracting from the message broker also provides us with the ability to pipeline several RAM3S instances that can, therefore, perform different processing tasks. This represents a richer model for stream analysis with respect to the one already available in the original RAM3S version. The generality of this new RAM3S version is demonstrated through experiments conducted on three different multimedia applications, proving that RAM3S is a formidable asset for enabling efficient and effective Data Mining and Machine Learning on multimedia data streams.
Technology, QH301-705.5, T, Physics, QC1-999, multimedia data streams, Engineering (General). Civil engineering (General), Chemistry, big data, stream processing; real-time analysis; big data; multimedia data streams, real-time analysis, TA1-2040, Biology (General), QD1-999, stream processing
Technology, QH301-705.5, T, Physics, QC1-999, multimedia data streams, Engineering (General). Civil engineering (General), Chemistry, big data, stream processing; real-time analysis; big data; multimedia data streams, real-time analysis, TA1-2040, Biology (General), QD1-999, stream processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
