Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DI-fusion
Article . 2013 . Peer-reviewed
Data sources: DI-fusion
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

VEGFR1 and VEGFR2 Involvement in Extracellular Galectin-1- and Galectin-3-Induced Angiogenesis

Authors: D'Haene, Nicky; Sauvage, Sébastien; Maris, Calliope; Adanja, Ivan; Le Mercier, Marie; Decaestecker, Christine; Baum, Linda; +1 Authors

VEGFR1 and VEGFR2 Involvement in Extracellular Galectin-1- and Galectin-3-Induced Angiogenesis

Abstract

Accumulating evidence suggests that extracellular galectin-1 and galectin-3 promote angiogenesis. Increased expression of galectin-1 and/or galectin-3 has been reported to be associated with tumour progression. Thus, it is critical to identify their influence on angiogenesis.We examined the individual and combined effects of galectin-1 and galectin-3 on endothelial cell (EC) growth and tube formation using two EC lines, EA.hy926 and HUVEC. The activation of vascular endothelial growth factor receptors (VEGFR1 and VEGFR2) was determined by ELISA and Western blots. We evaluated the VEGFR1 and VEGFR2 levels in endosomes by proximity ligation assay.We observed different responses to exogenous galectins depending on the EC line. An enhanced effect on EA.hy926 cell growth and tube formation was observed when both galectins were added together. Focusing on this enhanced effect, we observed that together galectins induced the phosphorylation of both VEGFR1 and VEGFR2, whereas galectin-1 and -3 alone induced VEGFR2 phosphorylation only. In the same way, the addition of a blocking VEGFR1 antibody completely abolished the increase in tube formation induced by the combined addition of both galectins. In contrast, the addition of a blocking VEGFR2 antibody only partially inhibited this effect. Finally, the addition of both galectins induced a decrease in the VEGFR1 and VEGFR2 endocytic pools, with a significantly enhanced effect on the VEGFR1 endocytic pool. These results suggest that the combined action of galectin-1 and galectin-3 has an enhanced effect on angiogenesis via VEGFR1 activation, which could be related to a decrease in receptor endocytosis.

Country
Belgium
Keywords

Vascular Endothelial Growth Factor Receptor-1, Galectin 1, Neovascularization, Pathologic, Science, Galectin 3, Q, Blotting, Western, R, Enzyme-Linked Immunosorbent Assay, Sciences bio-médicales et agricoles, Vascular Endothelial Growth Factor Receptor-2, Endocytosis, Medicine, Humans, Phosphorylation, Cells, Cultured, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 1%
Green
gold