
pmid: 35339905
Caspase-11, a cytosolic endotoxin (lipopolysaccharide: LPS) receptor, mediates pyroptosis, coagulopathy and lethality in endoxemia and bacterial sepsis. The activation of caspase-11 requires high mobility group box 1 (HMGB1)-mediated translocation of LPS from the extracellular space to the cytosol. Here we show that HMGB1-dependent cytosolic delivery of LPS was blocked by glycyrrhizin, a medication to treat liver diseases. Glycyrrhizin competitively bound HMGB1 and thereby inhibiting the physical interaction between HMGB1 and LPS. Treatment of glycyrrhizin significantly attenuated caspase-11-dependent immune responses, coagulopathy, organ injury and lethality in endotoxemia and experimental sepsis. Together, our data suggest that pharmacological inhibition of the cytosolic delivery of LPS by glycyrrhizin might be a potential therapeutic strategy to treat sepsis, which is a leading cause of death in hospitals worldwide.
Lipopolysaccharides, Caspases, Sepsis, Immunity, Humans, HMGB1 Protein, Glycyrrhizic Acid
Lipopolysaccharides, Caspases, Sepsis, Immunity, Humans, HMGB1 Protein, Glycyrrhizic Acid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
