Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical & Biological Engineering & Computing
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transfer learning for informative-frame selection in laryngoscopic videos through learned features

Authors: Patrini I.; Ruperti M.; Moccia S.; Mattos L. S.; Frontoni E.; De Momi E.;

Transfer learning for informative-frame selection in laryngoscopic videos through learned features

Abstract

Narrow-band imaging (NBI) laryngoscopy is an optical-biopsy technique used for screening and diagnosing cancer of the laryngeal tract, reducing the biopsy risks but at the cost of some drawbacks, such as large amount of data to review to make the diagnosis. The purpose of this paper is to develop a deep-learning-based strategy for the automatic selection of informative laryngoscopic-video frames, reducing the amount of data to process for diagnosis. The strategy leans on the transfer learning process that is implemented to perform learned-features extraction using six different convolutional neural networks (CNNs) pre-trained on natural images. To test the proposed strategy, the learned features were extracted from the NBI-InfFrames dataset. Support vector machines (SVMs) and CNN-based approach were then used to classify frames as informative (I) and uninformative ones such as blurred (B), with saliva or specular reflections (S), and underexposed (U). The best-performing learned-feature set was achieved with VGG 16 resulting in a recall of I of 0.97 when classifying frames with SVMs and 0.98 with the CNN-based classification. This work presents a valuable novel approach towards the selection of informative frames in laryngoscopic videos and a demonstration of the potential of transfer learning in medical image analysis. Flowchart of the proposed approach to automatic informative-frame selection in laryngoscopic videos. The approach leans on the transfer learning process, which is implemented to perform learned-features extraction using different convolutional neural networks (CNNs) pre-trained on natural images. Frame classification is performed exploiting two different classifiers: support vector machines and fine-tuned CNNs.

Keywords

Informative-frame selection, Support Vector Machine, Databases, Factual, Laryngoscopy, Deep learning; Informative-frame selection; Laryngoscopy; Learned features; Transfer learning, Deep learning, Capsule Endoscopy, Transfer learning, Workflow, Machine Learning, Learned features, Area Under Curve, Image Processing, Computer-Assisted, Humans, Neural Networks, Computer, Laryngeal Neoplasms, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Green
bronze
Related to Research communities
Cancer Research