Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

PHOG, a candidate gene for involvement in the short stature of Turner syndrome

Authors: J W, Ellison; Z, Wardak; M F, Young; P, Gehron Robey; M, Laig-Webster; W, Chiong;

PHOG, a candidate gene for involvement in the short stature of Turner syndrome

Abstract

The abnormalities seen in Turner syndrome (monosomy X) presumably result from haploinsufficiency of certain genes on the X chromosome. Gene dosage considerations lead to the prediction that the culpable genes escape X inactivation and have functional homologs on the Y chromosome. Among the genes with these characteristics are those residing in the pseudoautosomal regions (PAR) of the sex chromosomes. A pseudoautosomal location for a dosage-sensitive locus involved in stature has been suggested based on the analyses of patients with deletions of a specific segment of the short arm PAR; hemizygosity for this putative locus probably also contributes to the short stature in Turner individuals. We have isolated a gene from the critical deleted region that encodes a novel homeodomain-containing transcription factor and is expressed at highest levels in osteogenic cells. We have named the gene PHOG, for pseudoautosomal homeobox-containing osteogenic gene. Its deletion in patients with short stature, the predicted altered dosage in 45,X individuals, along with the nature of the encoded protein and its expression pattern, make PHOG an attractive candidate for involvement in the short stature of Turner syndrome. We have also found that the mouse homolog of PHOG is autosomal, which may help to explain the lack of a growth abnormality in mice with monosomy X.

Keywords

Homeodomain Proteins, DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Gene Expression, Turner Syndrome, Mice, Short Stature Homeobox Protein, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    279
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
279
Top 10%
Top 1%
Top 1%
bronze