Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUMC Scholarly Publi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seizure
Article . 2022 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated spike detection: Which software package?

which software package?
Authors: Reus, E.E.M.; Cox, F.M.E.; Dijk, J.G. van; Visser, G.H.;

Automated spike detection: Which software package?

Abstract

We assessed three commercial automated spike detection software packages (Persyst, Encevis and BESA) to see which had the best performance.Thirty prolonged EEG records from people aged at least 16 years were collected and 30-minute representative epochs were selected. Interictal epileptiform discharges (IEDs) were marked by three human experts and by all three software packages. For each 30-minutes selection and for each 10-second epoch we measured whether or not IEDs had occurred. We defined the gold standard as the combined detections of the experts. Kappa scores, sensitivity and specificity were estimated for each software package.Sensitivity for Persyst in the default setting was 95% for 30-minute selections and 82% for 10-second epochs. Sensitivity for Encevis was 86% (30-minute selections) and 61% (10-second epochs). The specificity for both packages was 88% for 30-minute selections and 96%-99% for the 10-second epochs. Interrater agreement between Persyst and Encevis and the experts was similar than between experts (0.67-0.83 versus 0.63-0.67). Sensitivity for BESA was 40% and specificity 100%. Interrater agreement (0.25) was low.IED detection by the Persyst automated software is better than the Encevis and BESA packages, and similar to human review, when reviewing 30-minute selections and 10-second epochs. This findings may help prospective users choose a software package.

Country
Netherlands
Related Organizations
Keywords

EMU, Epilepsy, Automatic detection, Spike detection, Humans, Video-EEG monitoring, Electroencephalography, Prospective Studies, Sensitivity and Specificity, Software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Green