Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Salient object detection via multi-spectral co-connectivity and collaborative graph ranking

Authors: Xin Wang; Xia Wang; Xin Zhang;

Salient object detection via multi-spectral co-connectivity and collaborative graph ranking

Abstract

Salient object detection (SOD) has become an active research direction with extensive applications in computer vision tasks. Although integrating RGB and infrared thermal (RGB-T) data has proven to be effective in adverse environments, it is difficult for RGB-T SOD methods to highlight the salient objects completely when objects cross the image boundary. To address the aforementioned problem, this paper proposes an effective RGB-T SOD algorithm based on multi-spectral co-connectivity (MSCC) and collaborative graph ranking. Specifically, we introduce the multi-spectral weighted color distance to construct an improved undirected weighted graph and compute the MSCC-based saliency map. Simultaneously, the MSCC-based background probability map is also calculated and employed in the following processing of real background seeds selection. Then, we utilize collaborative graph learning (CGL) and calculate the CGL-based saliency map in a two-stage ranking framework. Finally, we integrate these two saliency maps through multiplying or averaging to enhance the final saliency result. The experimental comparison results of 5 quantitative evaluation indicators between the proposed algorithm and 9 state-of-the-art methods on RGB-thermal datasets VT821 and VT1000 datasets demonstrate the robustness and superiority of the proposed work.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!