Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Orphanet Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Orphanet Journal of Rare Diseases
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Orphanet Journal of Rare Diseases
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Orphanet Journal of Rare Diseases
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutation spectrum of EXT1 and EXT2 in the Saudi patients with hereditary multiple exostoses

Authors: Zayed Al-Zayed; Roua A. Al-Rijjal; Lamya Al-Ghofaili; Huda A. BinEssa; Rajeev Pant; Anwar Alrabiah; Thamer Al-Hussainan; +3 Authors

Mutation spectrum of EXT1 and EXT2 in the Saudi patients with hereditary multiple exostoses

Abstract

Abstract Background Hereditary Multiple Exostoses (HME), also known as Multiple Osteochondromas (MO) is a rare genetic disorder characterized by multiple benign cartilaginous bone tumors, which are caused by mutations in the genes for exostosin glycosyltransferase 1 (EXT1) and exostosin glycosyltransferase 2 (EXT2). The genetic defects have not been studied in the Saudi patients. Aim of study We investigated mutation spectrum of EXT1 and EXT2 in 22 patients from 17 unrelated families. Methods Genomic DNA was extracted from peripheral leucocytes. The coding regions and intron–exon boundaries of both EXT1 and EXT2 genes were screened for mutations by PCR-sequencing analysis. Gross deletions were analyzed by MLPA analysis. Results EXT1 mutations were detected in 6 families (35%) and 3 were novel mutations: c.739G > T (p. E247*), c.1319delG (p.R440Lfs*4), and c.1786delA (p.S596Afs*25). EXT2 mutations were detected in 7 families (41%) and 3 were novel mutations: c.541delG (p.D181Ifs*89), c.583delG (p.G195Vfs*75), and a gross deletion of approximately 10 kb including promoter and exon 1. Five patients from different families had no family history and carried de novo mutations (29%, 5/17). No EXT1 and EXT2 mutations were found in the remaining four families. In total, EXT1 and EXT2 mutations were found in 77% (13/17) of Saudi HME patients. Conclusion EXT1 and EXT2 mutations contribute significantly to the pathogenesis of HME in the Saudi population. In contrast to high mutation rate in EXT 1 (65%) and low mutation rate in EXT2 (25%) in other populations, the frequency of EXT2 mutations are much higher (41%) and comparable to that of EXT1 among Saudi patients. De novo mutations are also common and the six novel EXT1/EXT2 mutations further expands the mutation spectrum of HME.

Keywords

Research, DNA Mutational Analysis, R, Saudi Arabia, Exons, EXT1, N-Acetylglucosaminyltransferases, Exostosin 2, Exostosin 1, Mutation, Medicine, Humans, EXT12, Osteochondromas, Exostoses, Exostoses, Multiple Hereditary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
gold