Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Pharmacologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pharmacology
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pharmacology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Double mutant gating perturbation analysis predicts a high conformational stability of the domain IV S6 segment of the voltage-gated Na+ channel

Authors: Xaver König; Touran Zarrabi; Peter Lukacs; René Cervenka; Karlheinz Hilber; Hannes Todt;

Double mutant gating perturbation analysis predicts a high conformational stability of the domain IV S6 segment of the voltage-gated Na+ channel

Abstract

The S6 segment of domain IV (DIV-S6) of the voltage-gated Na channel is considered to be a key player in gating and local anesthetic drug block. Thus, some mutations in DIV-S6 substantially alter the channel's inactivation properties. In order to get a comprehensive picture of the kinetic role of DIV-S6 in fast inactivation we performed a cysteine scanning analysis of sites 1575-1591 in the DIV-S6 of the rNav1.4 channel. In addition, we produced the same cysteine replacements in the background of the mutation K1237E. K1237 is located in the P-loop of domain III and mutations at this site have dramatic effects both on permeation and gating properties. Hence, K1237E most likely causes a complex conformational change of the channel. We sought to explore whether K1237E changes the pattern of gating perturbations by the serial cysteine replacements in DIV-S6. The constructs were expressed in Xenopus laevis oocytes and studied by means of two electrode voltage-clamp. The half-point of availability following a 50 ms conditioning prepulse (V05) was -44 ± 1 mV and -51 ± 1 mV in wild-type and K1237E, respectively (P < 0.001) . Most serial amino acid replacements in DIV-S6 produced shifts in V05, both in wild-type and in K1237E background, ranging from +17 ± 1 mV to -9 ± 2 mV. A plot of the shifts in V05 by single DIV-S6 mutants relative to wild-type versus the shifts in V05 by double mutants relative to K1237E showed a significant positive correlation (R= 0.72, P=0.002). This indicates that the general pattern of gating perturbations in DIV-S6 is not affected by K1237E, suggesting a high conformational stability of the DIV-S6 segment during the fast inactivated state. Support: FWF P21006-B11

Keywords

Pharmacology, Meeting Abstract, Pharmacology (medical)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold