Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Developmental expression patterns of kainate receptors in the mouse spinal cord

Authors: Shaoqian Cui; Peng Du; Xiaozhong Zhou; Huan Wang;

Developmental expression patterns of kainate receptors in the mouse spinal cord

Abstract

Kainate receptors, a subtype of ionotropic glutamate receptors, perform important functions in the spinal cord. This study aimed to examine the expression pattern of various kainate receptor subunits in the spinal cord over different stages of development. The regional distribution and levels of Grik1-5 mRNAs, which encode kainate receptor subunits, were examined in the spinal cord of embryonic, perinatal, and adult mice using in-situ hybridization and real-time PCR. At different developmental stages, the expression of Grik1-5 genes showed different regional distributions in the spinal cord. At E16.5, Grik2 and Grik3 were mainly expressed in the dorsal horns whereas Grik5 was expressed in the entire spinal cord. At P0 and P7, Grik2 expression accumulated at laminae II-IV, whereas Grik1 accumulated at the superficial laminae of the dorsal horns. At P30 and P60, the expression of Grik1-5 was concentrated in the superficial laminae of the dorsal horns. Development-related changes were observed in the expression pattern of Grik1-5. Grik5 was expressed in the entire spinal cord up to the perinatal period, whereas from P7 to adult stages, Grik5 expression was almost exclusively restricted to the dorsal horns. Similar observations were present with Grik1, Grik2, and Grik3. Consistently, quantitative determination of the expression levels of Grik1-5 was in accordance with the in-situ hybridization results. This age-related dynamic expression of kainate receptors may act as one driving force for the development of the anatomofunctional pattern and the maturation of the somatosensory circuitry in the spinal cord.

Related Organizations
Keywords

Gene Expression Regulation, Developmental, Nerve Tissue Proteins, Real-Time Polymerase Chain Reaction, Mice, Inbred C57BL, Posterior Horn Cells, Mice, Protein Subunits, Receptors, Kainic Acid, Spinal Cord, Animals, RNA, Messenger, In Situ Hybridization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!