Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidative Stress Reprograms Lipopolysaccharide Signaling via Src Kinase-dependent Pathway in RAW 264.7 Macrophage Cell Line

Authors: Andras Kapus; Ori D. Rotstein; John C. Marshall; Myron I. Cybulsky; Kinga A. Powers; Rachel G. Khadaroo;

Oxidative Stress Reprograms Lipopolysaccharide Signaling via Src Kinase-dependent Pathway in RAW 264.7 Macrophage Cell Line

Abstract

Oxidative stress generated during ischemia/reperfusion injury has been shown to augment cellular responsiveness. Whereas oxidants are themselves known to induce several intracellular signaling cascades, their effect on signaling pathways initiated by other inflammatory stimuli remains poorly elucidated. Previous work has suggested that oxidants are able to prime alveolar macrophages for increased NF-kappa B translocation in response to treatment with lipopolysaccharide (LPS). Because oxidants are known to stimulate the Src family of tyrosine kinases, we hypothesized that the oxidants might contribute to augmented NF-kappa B translocation by LPS via the involvement of Src family kinases. To model macrophage priming in vitro, the murine macrophage cell line, RAW 264.7, was first incubated with various oxidants and then exposed to low dose LPS. These studies show that oxidant stress is able to augment macrophage responsiveness to LPS as evidenced by earlier and increased NF-kappa B translocation. Inhibition of the Src family kinases by either pharmacological inhibition using PP2 or through a molecular approach by cell transfection with Csk was found to prevent the augmented LPS-induced NF-kappa B translocation caused by oxidants. Interestingly, while Src kinase inhibition was able to prevent the LPS-induced NF-kappa B translocation in oxidant-treated macrophages, this strategy had no effect on NF-kappa B translocation caused by LPS in the absence of oxidants. These findings suggested that oxidative stress might divert LPS signaling along an alternative signaling pathway. Further studies demonstrated that the Src-dependent pathway induced by oxidant pretreatment involved the activation of phosphatidylinositol 3-kinase. Involvement of this pathway appeared to be independent of traditional LPS signaling. Together, these studies provide a novel potential mechanism whereby oxidants might prime alveolar macrophages for altered responsiveness to subsequent inflammatory stimuli and suggest different cellular targets for immunomodulation following ischemia/reperfusion.

Keywords

Cell Nucleus, Lipopolysaccharides, Membrane Glycoproteins, Dose-Response Relationship, Drug, Macrophages, Blotting, Western, Calcium-Binding Proteins, NF-kappa B, Nerve Tissue Proteins, Hydrogen Peroxide, Blotting, Northern, Oxidants, Cell Line, Mice, Microscopy, Fluorescence, NF-KappaB Inhibitor alpha, Animals, I-kappa B Proteins, Lung, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
gold