Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioorganic & Medicinal Chemistry
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

5′-Alkyl-benzothiadiazides: A New Subgroup of AMPA Receptor Modulators with Improved Affinity

Authors: Dean, Phillips; Jennifer, Sonnenberg; Amy C, Arai; Rishi, Vaswani; Peter O, Krutzik; Thomas, Kleisli; Markus, Kessler; +3 Authors

5′-Alkyl-benzothiadiazides: A New Subgroup of AMPA Receptor Modulators with Improved Affinity

Abstract

AMPA receptors form a major subdivision of the glutamate receptor family that mediates excitatory synaptic transmission in the brain. Currents through AMPA receptors can be up- or down-regulated by compounds that allosterically modulate receptor kinetics through binding sites distinct from that for glutamate. One of those modulators is the benzothiadiazide IDRA-21 which has been reported to enhance synaptic transmission and be effective in behavioral tests, but typically requires threshold concentrations of at least 100 microM to be active in vitro. In this study, new benzothiadiazides were developed with IDRA-21 as lead compound and examined for their potency in modulating AMPA receptor kinetics. A significant increase in drug affinity was obtained by alkyl substitution at the 5'-position of IDRA-21; substitutions at other positions of the benzothiadiazide core generally did not yield a further gain in affinity and in some cases abolished drug binding. The 5'-ethyl derivative exhibited an EC(50) value in the order of 22 microM which represents about a 30-fold gain in affinity over that of IDRA-21. The EC(50) value is comparable to that of cyclothiazide, the most potent benzothiadiazide drug, but the effects on AMPA receptors differed substantially between these two compounds in that the 5'-ethyl derivative of IDRA-21 greatly increased the binding affinity for receptor agonists whereas cyclothiazide is known to reduce agonist binding. The structure--activity relationships reported here thus offer to provide new insights how receptor kinetics is linked to particular aspects of receptor--drug interactions.

Keywords

Neurons, Sulfonamides, Patch-Clamp Techniques, Brain, Benzothiadiazines, Rats, Rats, Sprague-Dawley, Kinetics, Structure-Activity Relationship, Animals, Combinatorial Chemistry Techniques, Receptors, AMPA, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!