Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Phytotherapy Researc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Phytotherapy Research
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plant‐derived chemicals as potential inhibitors of SARS‐CoV‐2 main protease (6LU7), a virtual screening study

Authors: Mohsen Sisakht; Amir Mahmoodzadeh; Maryam Darabian;

Plant‐derived chemicals as potential inhibitors of SARS‐CoV‐2 main protease (6LU7), a virtual screening study

Abstract

SARS‐CoV‐2 has caused millions of infections and more than 700,000 deaths. Taking the urgent need to find new therapeutics for coronavirus disease 2019 (COVID‐19), a dataset of plant‐based natural compounds was selected for the screening of antiviral activity. The viral 3‐chymotrypsin‐like cysteine protease (Mpro, 3CLpro) was selected as the target. Molecular docking was performed on 2,845 phytochemicals to estimate the spatial affinity for the active sites of the enzyme. The ADMET screening was used for the pharmacological and physicochemical properties of the hit compounds. Nelfinavir and Lopinavir were used as control for binding energy comparison. The top 10 hits, based on the binding energy (Kcal/mol), were Ginkgolide M (−11.2), Mezerein (−11), Tubocurarine (−10.9), Gnidicin (−10.4), Glycobismine A (−10.4), Sciadopitysin Z‐10.2), Gnididin (−9.2), Glycobismine A (−10.4), Sciadopitysin (−10.2), Gnididin (−9.20, Emetine (−8.7), Vitexin (−8.3), Calophyllolide (−8.3), and 6‐(3,3‐Dimethylallyl)galangin (−7.9). The binding energy for nelfinavir and lopinavir were − 9.1 and − 8.4, respectively. Interestingly, some of these natural products were previously shown to possess antiviral properties against various viruses, such as HIV, Zika, and Ebola viruses. Herein, we suggest several phytochemicals as the inhibitors of the main protease of SARS‐CoV‐2 that could be used in the fight against COVID‐19.

Related Organizations
Keywords

Molecular Docking Simulation, SARS-CoV-2, Phytochemicals, Humans, Protease Inhibitors, Antiviral Agents, Peptide Hydrolases, COVID-19 Drug Treatment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
bronze