Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Electroni...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Electronic Materials
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microstructural analysis of NiInGe ohmic contacts for n-type GaAs

Authors: Tsunoda, Y; Murakami, M;

Microstructural analysis of NiInGe ohmic contacts for n-type GaAs

Abstract

NiInGe ohmic contact materials, which are attractive to use in future GaAs devices, were previously developed in our laboratories. Although the NiInGe contacts provided low contact resistances of about 0.3 Ω-mm and excellent thermal stability, further reduction of the contact resistance (RC) of the NiInGe contacts was mandatory to use these contacts in submicron devices. In this paper, the microstructural parameters, which influence the RC values, were investigated by correlating the RC values with the microstructure at the interface between the contact materials and the GaAs substrate. The RC values of the NiInGe contacts were found to depend strongly on the volume fraction and the In concentration (x) of the InxGa1−xAs compound semiconductor layers, which were formed at the metal/GaAs interface. Both the volume fraction and the In concentration of the InxGa1−xAs layers were found to depend on the thickness of the In layer used in the NiInGe contact and the annealing temperature to form the ohmic contact. A RC value of 0.18 Ω-mm was obtained for the Ni (18 nm)/In (13 nm)/Ge (30 nm) contact (where a slash “/” indicates the deposition sequence) after annealing at temperature of 650°C for 5 sec.

Related Organizations
Keywords

n-type GaAs, ohmic contact, metal/GaAs interface

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!