Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dr.ntu.edu.s...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Digital Repository of NTU
Conference object . 2012
https://doi.org/10.1109/fpl.20...
Article . 2012 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing performance of Tall-Skinny QR factorization using FPGAs

Authors: Abid Rafique; Nachiket Kapre; George A. Constantinides;

Enhancing performance of Tall-Skinny QR factorization using FPGAs

Abstract

Communication-avoiding linear algebra algorithms with low communication latency and high memory bandwidth requirements like Tall-Skinny QR factorization (TSQR) are highly appropriate for acceleration using FPGAs. TSQR parallelizes QR factorization of tall-skinny matrices in a divide-and-conquer fashion by decomposing them into sub-matrices, performing local QR factorizations and then merging the intermediate results. As TSQR is a dense linear algebra problem, one would therefore imagine GPU to show better performance. However, the performance of GPU is limited by the memory bandwidth in local QR factorizations and global communication latency in the merge stage. We exploit the shape of the matrix and propose an FPGA-based custom architecture which avoids these bottlenecks by using high-bandwidth on-chip memories for local QR factorizations and by performing the merge stage entirely on-chip to reduce communication latency. We achieve a peak double-precision floating-point performance of 129 GFLOPs on Virtex-6 SX475T. A quantitative comparison of our proposed design with recent QR factorization on FPGAs and GPU shows up to 7.7× and 12.7× speed up respectively. Additionally, we show even higher performance over optimized linear algebra libraries like Intel MKL for multi-cores, CULA for GPUs and MAGMA for hybrid systems.

Country
Singapore
Related Organizations
Keywords

Computer Science and Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Top 10%
Green