Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE CENTRAL COMPLEX OFDROSOPHILA MELANOGASTERIS INVOLVED IN FLIGHT CONTROL: STUDIES ON MUTANTS AND MOSAICS OF THE GENEELLIPSOID BODY OPEN

Authors: M, Ilius; R, Wolf; M, Heisenberg;

THE CENTRAL COMPLEX OFDROSOPHILA MELANOGASTERIS INVOLVED IN FLIGHT CONTROL: STUDIES ON MUTANTS AND MOSAICS OF THE GENEELLIPSOID BODY OPEN

Abstract

Visual flight control is studied in three mutant alleles of the gene ellipsoid body open (ebo) of Drosophila melanogaster. In mutant ebo flies the central complex is disturbed to varying degrees. Defects range from a small opening in the ellipsoid body to the dissociation of the ring into two parts, a cleft in the fan-shaped body and hypoplasia in the protocerebral bridge. Other parts of the brain are not visibly affected. Flight behavior is normal with respect to the amplitude of the optomotor response and to the object response (single rotating stripe). A reduced amplitude in the small random oscillations of the torque trace (yaw torque activity), however, is found in all three alleles. In two of them the frequency of torque spikes is reduced. In the allele ebo678 the dynamics of the optomotor response is altered. Upon reversal of the direction of rotation mutant flies take longer than wild type to shift their yaw torque to the new response level (optomotor reversal time). Finally, these flies also behave abnormally in the flight simulator in which their yaw torque controls the angular velocity of the panorama. Many ebo678 flies fixate a single stripe less persistently than normal flies, some even trying to fly away from it (antifixation). In ebo678 gynandromorphs the four behavioral phenotypes ("yaw torque activity", "torque spike frequency", "on-target fixation" and "optomotor reversal time") are all highly correlated with the phenotype of the ellipsoid body. Yaw torque activity and torque spike frequency in addition are correlated with the phenotype of the thorax suggesting that these behavioral defects are in part caused by mutant influences on the ventral ganglion. The results support the hypothesis that the central complex is involved in the control of flight behavior.

Related Organizations
Keywords

Male, Mosaicism, Brain, Genes, Insect, Motor Activity, Drosophila melanogaster, Phenotype, Mutagenesis, Ethyl Methanesulfonate, Flight, Animal, Animals, Female, Crosses, Genetic, Vision, Ocular

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!