Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutant Isolation of the Escherichia coli Quinoprotein Glucose Dehydrogenase and Analysis of Crucial Residues Asp-730 and His-775 for Its Function

Authors: Osao Adachi; Kazunobu Matsushita; Kenichi Sumi; Mamoru Yamada; Hisayo Inbe; Makoto Tanaka;

Mutant Isolation of the Escherichia coli Quinoprotein Glucose Dehydrogenase and Analysis of Crucial Residues Asp-730 and His-775 for Its Function

Abstract

Several mutants of quinoprotein glucose dehydrogenase (GDH) in Escherichia coli were obtained and characterized. Of these, significant mutants were further characterized by kinetic analysis after purification or by site-directed mutagenesis to introduce different amino acid substitutions. H775R and H775A showed a pronounced reduction of affinity for a prosthetic group, pyrroloquinoline quinone (PQQ), suggesting that His-775 may directly interact with PQQ. D730N and D730A showed low glucose oxidase activity without influence on the affinity for PQQ, Mg2+, or substrate, but D730R showed reduced affinity for PQQ. The spectrum of tryptophan fluorescence revealed that the local structure surrounding PQQ was not changed by D730N mutation. Based on these data, we assume that Asp-730 may occur close to PQQ and function as a proton (and also electron) donor to PQQ or acceptor from PQQH2. Substitutions of Gly-689, that are located at the end of a unique segment of GDH among homologous quinoprotein dehydrogenases, directed reduction of the affinity for PQQ or GDH activity. Therefore, the unique segment and Asp-730 may play a specific role for GDH, which might be related to the intramolecular electron transfer from PQQ to ubiquinone.

Related Organizations
Keywords

Aspartic Acid, Glucose Dehydrogenases, Molecular Sequence Data, Kinetics, Amino Acid Substitution, Escherichia coli, Mutagenesis, Site-Directed, Histidine, Magnesium, Amino Acid Sequence, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
gold