Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemosensorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosensors
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosensors
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosensors
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Ionic Associate of Metamizole as an Electrode-Active Component of a PVC Plasticized Membrane Electrode

Authors: Sarizhat D. Tataeva; Kurban E. Magomedov; Ruslan Z. Zeynalov; Naida D. Baygishieva; Viktorya S. Magomedova; Alina A. Rabadanova; Farid F. Orudzhev;

The Ionic Associate of Metamizole as an Electrode-Active Component of a PVC Plasticized Membrane Electrode

Abstract

The technology for manufacturing a film membrane of the metamizole-selective electrode containing ion associate metamizole-octadecylammonium ODAH+MT− as an electrode active component (EAC) has been proposed. The main potentiometric characteristics of the metamizole-selective electrode have been determined. The expediency of the proposed design of the metamizole selective electrode for the determination of metamizole in dosage forms has been substantiated. The best composition of the membrane (wt.%) of the metamizole-selective electrode has corresponded to: ODAH+MT−—5.3; 2-nitrophenyloctylether—63.1; poly(vinyl chloride)—31.6. Electrode-active component in the membrane phase functions as an ion associate ODAH+MT−. Potentiometric characteristics of metamizole-selective electrode have been determined, which corresponded to: linear range 1 × 10−2–1 × 10−4 with limit of detection 4.58 × 10−5 M, electrode function slope −48.5 mV/dec., working interval pH 4.5–7.3, response time 60 s. The potentiometric coefficients of selectivity of the metamizole-selective electrode with respect to various ions have been determined. The possibility of determining metamizole in a medicinal product has been tested. The results of the analyses show good agreement between the two methods (relative error less than 7.0%) with coefficients of variation less than 5% for MT-SE and iodometric methods.

Related Organizations
Keywords

sensor, analysis, ISE, dipyrone, QD415-436, membrane, Biochemistry, metamizole

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold