Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutant Products of the NF2 Tumor Suppressor Gene Are Degraded by the Ubiquitin-Proteasome Pathway

Authors: Alexis Gautreau; Marco Giovannini; Jan Manent; Bruno Fievet; Monique Arpin; Daniel Louvard;

Mutant Products of the NF2 Tumor Suppressor Gene Are Degraded by the Ubiquitin-Proteasome Pathway

Abstract

Neurofibromatosis type 2 (NF2), a syndrome associated with multiple tumors of the nervous system, mostly schwannomas, is caused by mutations in the NF2 tumor suppressor gene that encodes schwannomin (Sch). Here we examined NF2 pathogenetic mutations that result in misfolding of the FERM domain. We found that these mutant forms of Sch were efficiently degraded by the ubiquitin-proteasome pathway. In transfected cells, Sch Delta F118 was 3-fold more efficiently degraded than the related molecule ezrin bearing the equivalent mutation. In heterozygous Nf2 knock-out mouse fibroblasts, endogenous mutant Sch Delta 81-121, but not wild type Sch, was also degraded by proteasomes. We further show that this degradation pathway is functional in primary Schwann cells. We analyzed Sch Delta 39-121 expressed in a transgenic mouse model of NF2 and found that Sch Delta 39-121, but not the endogenous wild type Sch, was unstable due to proteasome-mediated degradation. Altogether these results suggest that degradation of mutant Sch mediated by the ubiquitin-proteasome pathway is a physiopathological pathway contributing to the loss of Sch function in NF2 patients.

Keywords

Adenosine Triphosphatases, Mice, Knockout, Neurofibromin 2, Proteasome Endopeptidase Complex, Ubiquitin, Mice, Transgenic, Fibroblasts, Transfection, Recombinant Proteins, Cell Line, Cysteine Endopeptidases, Kinetics, Mice, Multienzyme Complexes, Genes, Neurofibromatosis 2, Animals, Schwann Cells, Sequence Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
gold